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Abstract. We propose a method to determine the community structure of a complex network. In this
method the ground state problem of a ferromagnetic random field Ising model is considered on the network
with the magnetic field Bs = +∞, Bt = −∞, and Bi�=s,t = 0 for a node pair s and t. The ground state
problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically
with the help of a combinatorial optimization algorithm. The community structure is then identified from
the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the
existence of the community structure, and is applicable equally well to unweighted and weighted networks.
We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary
karate club network, the scientific collaboration network, and the stock price correlation network.

PACS. 89.75.Hc Networks and genealogical trees – 89.65.-s Social and economic systems – 05.10.-a
Computational methods in statistical physics and nonlinear dynamics – 05.50.+q Lattice theory and
statistics (Ising, Potts, etc.)

1 Introduction

Network theory is a useful tool for the study of com-
plex systems. Universal features of some biological, so-
cial, and technological systems have been studied through
their network structure [1–3]. Recent studies have revealed
that some complex networks have the community struc-
ture, which means that highly interconnected nodes are
clustered in distinct parts. The community may represent
functional modules in biological networks [4–7], industrial
sectors in economic networks [8,9], and coteries of intimate
individuals in social networks [10].

Recently various methods have been suggested for find-
ing out the community structure in a given network [11].
Girvan and Newman proposed an algorithm based on it-
erative removal of links with the highest betweenness cen-
trality [10–12]. The betweenness centrality of an edge is
given by the number of the pathways passing through it
among shortest paths between all node pairs [13]. Nodes in
different communities, if any, would be connected through
rare inter-community links. Hence one could isolate com-
munities by repeatedly removing links with the highest
betweenness centrality. Similar methods were also consid-
ered in references [14–16]. Optimization techniques were
also considered to find out the community structure. In
those approaches, the community structure is found by
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optimizing an auxiliary quantity, such as the modular-
ity [17,18].

Some physical problems turned out to be useful in
detecting the community structure. Various spin systems
embedded in a network have been used to study the com-
munity structure [19–23]. Fu and Anderson considered an
Ising spin glass model for a graph partitioning [19]. Blatt
et al. proposed the idea that multivariate data can be
partitioned into clusters from correlation properties of a
ferromagnetic Potts model [20]. Reichardt and Bornholdt
suggested that community structures can be detected from
low energy spin configurations of a Potts model with
mixed ferromagnetic and antiferromagnetic couplings [21].
Also studied were random walks [24] and resistor network
problems [25].

In this paper we propose a method for finding the com-
munity structure. Our approach is motivated by the ob-
servation on the Zachary network, a classical example of
social networks with the community structure [10]. It is
an acquaintance network of 34 members in a karate club.
Once there arose a conflict between two influential mem-
bers, which resulted in the breakup of the club into two.
It is reasonable to think that the members would tend to
minimize the number of broken ties, which can be accom-
plished by the breakup in accordance with the community
structure. In fact, the resulting shape after the breakup
coincides with the community structure of the original
karate club network [10]. It suggests that the community
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structure of a given network may be found by simulat-
ing the breakup caused by an enforced frustration among
nodes.

We simulate the breakup by studying the ferromag-
netic random field Ising model (FRFIM): The Ising spins
σi = ±1 are assigned to all nodes i = 1, . . . , N , they in-
teract ferromagnetically through links, and the quenched
random magnetic field Bi is applied to each spin. The fer-
romagnetic interaction represents the cost of broken ties,
and the random field introduces the frustration. In par-
ticular, we consider the case where the positive infinite
magnetic field is applied to one spin and the negative in-
finite magnetic field to another. It amounts to imposing
the boundary condition that the two spins are in opposite
states. It simulates the conflict raised by the two mem-
bers in the Zachary network. From this, we will identify
the community structure from the ground state spin do-
main pattern of the FRFIM.

This paper is organized as follows. In Section 2 we
introduce the FRFIM in general weighted networks. The
ground state problem of the FRFIM can be solved exactly
with a numerical algorithm, which will be explained in Ap-
pendix. Then the method for finding out the community
structure is presented. In Section 3, we apply the method
to several networks and present the results. We conclude
the paper with summary and discussion in Section 4.

2 Method

Consider a weighted network G of N nodes. The connec-
tivity of G can be represented with the weight matrix
{Jij |i, j = 1, · · · , N}, where Jij is a prescribed weight or
strength of a link between nodes i and j if they are con-
nected or Jij = 0 otherwise. We assume that the weights
are non-negative, Jij ≥ 0, and that the weights are sym-
metric, Jij = Jji. For an unweighted network, the matrix
elements take the binary value 0 or 1, and the weight ma-
trix reduces to the usual adjacency matrix.

The FRFIM on the network is defined with the Hamil-
tonian

H = −1
2

∑

i,j

Jijσiσj −
∑

i

Biσi, (1)

where σi = ±1 is the Ising spin variable at each node
i. The spins interact ferromagnetically with the coupling
strength {Jij}. They are also coupled with the quenched
random magnetic field {Bi}.

The FRFIM model has been studied extensively in d
dimensional regular lattices in order to investigate the na-
ture of the glass phase transition (see Ref. [26] and ref-
erences therein). It has also been used to investigate the
disorder-driven roughening transition of interfaces in dis-
ordered media [27]. The phase transition in the FRFIM on
complex networks, which would also be interesting, has
not been studied so far. The issue will be studied else-
where [28].

The specific feature of the FRFIM depends on the dis-
tribution of the random field {Bi}. In this work, we con-
sider the simple yet informative magnetic filed distribution

Fig. 1. Zachary karate club network. The links connecting
nodes that are (not) in the same community are represented
with solid (dashed) lines. The dotted lines separate the com-
munities.

given by

Bi =

⎧
⎨

⎩

+∞ , for i = s
−∞ , for i = t
0 , for i �= s, t

(2)

for two nodes s and t. It amounts to imposing the bound-
ary condition that σs = +1 and σt = −1, which induces
frustration among the nodes. This specific random field
distribution is adopted in order to mimic the conflict in
the Zachary network. In the ground state, nodes are sep-
arated into different spin domains, which will be related
to the community structure of the underlying network.

As an explicit example, we consider the Zachary karate
club network which is illustrated in Figure 1. The node
labeled as 1 (34) corresponds to the club instructor (ad-
ministrator). They had a conflict, which resulted in the
breakup. Nodes on the side of the administrator and the
instructor after the breakup are denoted with circular and
rectangular symbols, respectively. With Jij = 1 for all
links and the magnetic field given by equation (2) with
s = 1 and t = 34, one can study the FRFIM on the net-
work. Solving the ground state problem, we found that
it has degenerate ground states: The black (white) nodes
belong to the + (−) spin domain in all ground states,
while the gray nodes (3, 10, 29) may belong to either do-
main. Note that the spin domains almost coincide with
the actual shape of the network after the breakup; all
black (white) nodes are on the side of the administra-
tor (instructor). The gray nodes are in a marginal state.
It is reasonable to think that they do not belong to ei-
ther community. In the previous work [10], the node 3
was misclassified. Our result hints that it is due to the
marginality.

The example clearly shows that the FRFIM is useful
for finding the community structure. For a general appli-
cation, (i) one needs to know the ground state(s) of the
FRFIM of equation (1) with the quenched random mag-
netic field given in equation (2) for any node pair of s and
t. Then, one needs to identify the set of all nodes that
belong to the same spin domain as s and t in all ground
states. Those sets will be called the coteries and denoted
by Cs and Ct, respectively. The number of nodes in the
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coterie C will be called the coterie size and denoted by |C|.
(ii) More importantly, one needs to specify the node pair
s and t which is relevant to the community structure. An
arbitrary choice of s and t will not provide any informa-
tion on the community structure. For example, if we take
s = 12 and t = 15 in the Zachary network in Figure 1, we
obtain that Cs = {12} and all other nodes are in Ct. This
merely means that the node 12 is a peripheral node.

For (i), the ground state problem of the FRFIM can be
solved exactly with the help of a numerical combinatorial
optimization algorithm (see Appendix). This is achieved
by mapping the ground state problem onto the minimum
cut problem or the maximum flow problem [29]. The al-
gorithm allows us to find all ground states, with which we
can find the coteries Cs and Ct for any pair of s and t. We
explain the detailed procedure in Appendix.

For (ii), the community structure can be found from
the distribution of the coterie sizes for all pairs of s and t.
For a certain pair of s and t, it may be that |Cs| ∼ |Ct| ∼
O(1) � N . This happens when s and t are peripheral
nodes of the network; most nodes are not influenced by
them. Such a pair does not provide any information on
the community structure. When |Cs| ∼ O(1) � |Ct| ∼
O(N), s is a peripheral node while t is inside the bulk.
The coteries Cs and Ct do not correspond to a community
either. On the contrary, O(1) � |Cs| ∼ |Ct| ∼ O(N),
can occur only when there exist communities whose sizes
are of the order of N , where s and t are chosen among
“influential” nodes in different communities. In this case,
we will regard the coteries Cs and Ct as the communities
in the network.

In order to distinguish the different cases, we define the
“separability” Dst for a node pair s and t as the product
of the coterie sizes,

Dst = |Cs| · |Ct| . (3)

It ranges in the interval 1 ≤ Dst ≤ N2/4. We propose that
the community structure be detected with the distribution
of the separability Dst for all pairs of s and t. If Dst �
O(N) for all pairs of s and t, then we conclude that the
network has no community structure. On the other hand,
if Dst ∼ O(N2) for a certain pair of s and t, then we
conclude that the network consists of communities that
can be identified from the coteries Cs and Ct. Moreover, the
nodes s and t may be regarded as the influential nodes of
the communities. Therefore, in our method, the existence
of the community structure is verified with the scaling
behavior of the maximum value of the separability with
the network size.

For a given network size N , the scaling can be exam-
ined with the quantity lnDst/ ln N . Without the commu-
nity structure, it would be close to or much less than 1 for
all node pairs. A node pair with lnDst/ ln N > 1 indicates
the presence of the community structure.

3 Results

We have tested the method by applying it to the Barabási-
Albert (BA) network [30], the Zachary karate club net-
work [10], the scientific collaboration network [10], and

Fig. 2. The rank plot for the separability distribution for the
BA network (a), the Zachary karate club network (b), the scien-
tific collaboration network (c), and the stock price correlation
network (d).

the stock price correlation network [31]. In each network,
the separability was calculated for all node pairs, and the
separability distribution was examined with a so-called
rank plot, where [ln D/ lnN ] is plotted against a normal-
ized rank of each node pair. The rank is assigned to each
node pair in the ascending order of the separability. It
is then normalized so that the rank of the pair with the
maximum value of the separability is equal to 1.

The BA network is an unweighted network. It is known
that the BA network does not have a community struc-
ture. We grew a BA network of N = 100 nodes, and
calculated the separability Dst for all node pairs. The
separability distribution is presented as the rank plot in
Figure 2a. We find that the separability is clustered at
Dst = 1 and near Dst � N for all pairs of s and t,
hence ln Dst/ ln N � 1. This confirms that the BA net-
work does not have the community structure (see Fig. 3a),
and demonstrates the form of the separability distribution
for networks without the community structure.

Next we studied the separability distribution of the
Zachary karate club network of N = 34 nodes, which
is presented in Figure 2b. We found that Dst � N for
all node pairs except (1, 34) and (1, 33). For the pairs
(s, t) = (1, 33) and (1, 34), we obtained the same coter-
ies, Cs of 15 nodes and Ct of 16 nodes, which are marked
with the black and the white symbols in Figure 1, respec-
tively (see also Fig. 3b). Therefore, we can conclude that
there exist two communities in the network and that the
node 1 is the influential node of one community and the
nodes 33 and 34 are in the other community. In fact, nodes
1 and 34 correspond to the club instructor and the ad-
ministrator, respectively. The detected communities are in
good agreement with the network shape after the breakup.

We also investigated the community structure of a
larger and more complex network. We examined the un-
weighted collaboration network of N = 118 scientists in
the Santa Fe Institute [10]. In this network, two nodes (sci-
entists) are linked if they coauthored at least one arti-
cle. The rank plot is presented in Figure 2c. One can see
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Fig. 3. (Color online) The community structure of (a) the BA
model network (N = 100), (b) the Zachary karate club net-
work (N = 34), (c) the scientific collaboration network (N =
118), and (d) the stock correlation network (N = 137). Nodes
in different communities are distinguished with color. The
white symbols represent the marginal nodes [33].

that the separability is distributed broadly, which indi-
cates that the network has multiple (more than two) com-
munities.

In such a case, the communities can be identified by ap-
plying our method hierarchically: first of all, one can find
the node pair (s0, t0) with the largest separability, and the
corresponding coteries Cs0 and Ct0 . The coterie may con-
sist of a single community or be the union of several sub-
communities. In order to investigate the sub-structure, one
constructs the sub-network which consists of all nodes and
links within each coterie. Then, one can apply the method
to the sub-networks. This can be performed hierarchically
until a sub-network no longer has the community struc-
ture. Or one may proceed with the iteration only when
the subnetwork size is equal to or larger than a threshold
value m. The resulting coteries can then be identified as
communities up to a resolution m.

With the hierarchical application of our method, we
found the community structure of the scientific collabora-
tion network as shown in Figure 3c. Here, we identify all
communities whose size are equal to or larger than m = 5.
The community structure is in good agreement with that
found in reference [10].

Our method is also applicable to weighted networks.
As an example of weighted networks, we studied the eco-
nomic network of 137 companies in the New York Stock
Exchange (NYSE) market. The network is constructed
through the stock price return correlation between the
companies for the 21 year period from 1983 to 2003 [31].
With the stock price Pi(t) of a company i at time t, the
return is given by Ri(t) = lnPi(t+∆t)− ln Pi(t) with the
unit time interval ∆t taken to be one day. Then, the stock

price correlation is given by

Cij =
〈(Ri − 〈Ri〉)(Rj − 〈Rj〉)〉√

(〈R2
i 〉 − 〈Ri〉2)(〈R2

j 〉 − 〈Rj〉2)
,

where the angular bracket indicates the time average over
the period. Its value ranges in the interval −1 ≤ Cij ≤ 1,
and is large for strongly correlated company pairs. In fact,
only 0.83% among all pairs of i and j have negative val-
ues of Cij with negligible absolute values. Hence, one can
neglect the effect of the negative correlation. It has been
shown that the structural information of the economic sys-
tem is encoded in the correlation matrix {Cij} [8,32].

In order to apply our method, all weights are required
to be non-negative. Hence, we assume that the weight is
given by Jij = eaCij with a positive constant a taken to
be 20. The weights are positive for all pairs of nodes, and
the economic network is fully connected. The separabil-
ity distribution is shown in the rank plot in Figure 2d.
As in the collaboration network, there are several non-
trivial separability levels. We identified all communities
whose size is equal to or larger than 3 with the same hi-
erarchical method as in the collaboration network. The
resulting shape of the network is illustrated in Figure 3d.
We confirmed that the communities are formed by com-
panies in the same industrial sector categorized by Yahoo
finance. For example, the largest community consists of
13 companies in the energy sector (red), which contains
the following energy companies; HAL, KMG, NBL, COP,
SLB, CVX, VLO, XOM, BP, RD, OXY, MRO, APA [34].
The second largest cluster corresponds to the group of 11
companies related to the electric utilities. And the others
include health care (6 companies), basic material (5), rail
road (4), and airline (3) [35]. This study shows that our
method works well for weighted networks. We note that
many nodes (white symbols) remain unclassified. We at-
tribute it to the fully-connectedness of the network. Our
method works better if there exist strong centers of com-
munities. In a fully-connected network, a community could
be isolated if there are much stronger centers than in a
sparse network. This explains why our method found only
a few communities.

4 Summary and discussion

In this paper we have proposed a method for finding the
community structure of general networks. It is achieved
by studying the ground state problem of the FRFIM on
the networks with a magnetic field distribution given in
equation (2) for two arbitrary nodes s and t. The coteries
Cs and Ct are defined as the sets of all nodes that belong
to the same spin domains as s and t in all possible degen-
erate ground states, respectively. The community struc-
ture is then manifested in the coterie pattern for the pair
with the maximum value of the separability Dst defined
in equation (3). Our method is motivated from the obser-
vation of the Zachary karate club network, which shows
that the resulting shape of the network after breakup is
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determined by the underlying community structure. In our
method, the response of the networks subject to schism is
simulated with the FRFIM.

Our method is applicable to both unweighted and
weight networks. Usually the existence of the community
structure is tested with the modularity [17]. In our method
we introduce the separability for that purpose: If the sep-
arability scales as Dst � O(N) for all node pairs as in
the BA network, the network does not have a community
structure. On the other hand, if Dst ∼ O(N2) for a cer-
tain pair of s and t, one can conclude that the network
has a community structure and that the nodes s and t are
influential nodes in each community. Figure 3 shows the
performance of the method in real-world networks.

Our method has a different feature, which can be com-
pared to others in terms of the betweenness centrality [10].
This can be illustrated by the following example network.
Consider two m-regular graphs G1 and G2 with all nodes
having m links. And then add l links between nodes in
G1 and G2 to make a graph G. Obviously the new links
have large values of the betweenness centrality for finite
values of l. Hence, the methods based on the betweenness
centrality would divide G into the sum of G1 and G2. On
the contrary, our method divides the graph G only when
m ≥ l, that is to say, when there are nodes whose degree
is larger than the the number of the interlinks. This shows
that our method has a stricter condition for the commu-
nity structure than others. In the context of the FRFIM,
for m < l, all other nodes are not influenced by the ran-
dom field applied to any node pair. Our method claims
that the entire graph G constitutes a single community it-
self rather than being decomposed into two communities.

One of the weak points of our method is the time com-
plexity. Practically, the ground state problem of the FR-
FIM in sparse networks of N nodes has the time complex-
ity of O(Nθ) with θ � 1.2 [29]. Since one has to solve the
ground state problems for all magnetic field distributions,
the total time complexity scales as O(N2+θ). Hence, in the
practical sense, our method is limited to networks of up to
a few thousands of nodes. One may avoid the time com-
plexity problem if the important nodes are known a priori.
In network theory, the importance of nodes can be mea-
sured by, e.g., the degree or the betweenness centrality.
Hopefully the community structure of large networks can
be studied if one incorporates such important measures
into our method.

In the present work, we adopted the specific form of the
magnetic field as in equation (2). One may consider the
FRFIM with a more general magnetic field distribution.
We expect that the ground state property depends on the
community structure of an underlying network, which can
then be used to detect the community structure. We leave
the extension for a future work.

This work was supported by Korea Research Foundation
Grand(KRF-2003-003-C00091). JDN would like to thank KIAS
for the hospitality during the visit.

Fig. 4. (a) A network G with 4 nodes (filled circles) and
4 links (lines) for the FRFIM. Figures represent the magnetic
fields and the interaction strengths, respectively. (b) The cor-
responding capacitated network G′ with the link capacities. (c)
The maximum-flow configuration with v� = 8. The dotted lines
represent saturated links with x�

αβ = cαβ . The dashed lines X,
Y , and Z represent boundaries associated with ST -cuts.

Appendix: Minimum cut and maximum flow
problem

This Appendix is intended to introduce the combinatorial
optimization algorithm for solving the ground state prob-
lem of the FRFIM. For a more rigorous description, we
refer the readers to reference [29].

Consider a network G of N nodes with the symmetric
weight matrix {Jij ≥ 0} (i, j = 1, · · · , N). The ferromag-
netic random field Ising model on G is defined by the
Hamiltonian in equation (1) with the quenched random
magnetic field {Bi}. The ground state is the spin configu-
ration that has the minimum energy among all 2N config-
urations. One might find the ground state by enumerating
all spin configurations, which is obviously time consuming
and inefficient. We will explain the efficient way for solving
the ground state problem.

It is useful to introduce a capacitated network denoted
by G′: having all the nodes and links of G, G′ contains
two additional nodes S, called the source, and T , called
the sink, and additional links between the source (sink)
and the nodes with the positive (negative) magnetic field.
G′ is also a weighted network with the symmetric weight
matrix {cαβ} (α, β = S, T, 1, · · · , N). For a link (ij) from
the original network G, the weight is given by cij = 2Jij .
For the additional link, the weight is given by cSi = Bi for
all i with Bi > 0 and ciT = |Bi| for all i with Bi < 0. The
weight of the network G′ is usually called the capacity.
Figure 4 illustrates the relation between a network G of
four nodes {a, b, c, d} and the corresponding capacitated
network G′.

In the capacitated network G′ we define a ST -cut as a
decomposition of all nodes into two disjoint sets S and T
with S ∈ S and T ∈ T . It will be denoted by [S, T ]. For
a given [S, T ], some links connect nodes in the different
sets. The set of such links forms the boundary of the cut,
which is denoted by (S, T ) = {(αβ)|α ∈ S, β ∈ T }. The
cut capacity C[S, T ] is then defined as the total sum of
the capacity of the boundary links, that is,

C[S, T ] =
∑

(αβ)∈(S,T )

cαβ . (4)
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Figure 4 shows some examples of the cut. The boundary
denoted by X is associated with a cut [{S, a, b, c}, {T, d}],
whose cut capacity is 14.

There exists an one-to-one correspondence between the
Ising spin configuration on the weighted network G and
the cut [S, T ] of the capacitated network G′. It is achieved
by assigning σi = +1(−1) for all nodes i in S(T ) and
vice versa. Hence, the sets S and T correspond to up and
down spin domains, respectively, and the boundary (S, T )
corresponds to the spin domain wall. Furthermore, one can
easily verify that the energy E of the FRFIM of a spin
configuration {σi} and the cut capacity C[S, T ] satisfy
the relation

E({σi}) = C[S, T ] + E0 (5)

where E0 = −
∑

i,j Jij/2 −
∑

i |Bi|/2. Therefore, solving
the ground state of the FRFIM on G is equivalent to find-
ing the optimal ST -cut on G′ whose cut capacity is mini-
mum. It is called the minimum cut problem.

The minimum cut problem can be further mapped on
to the maximum flow problem: On the capacitated network
G′, a flow denotes a set of flow variables {xαβ} defined for
all links in G′ which are subject to a capacity constraint

0 ≤ xαβ ≤ cαβ (6)

and a mass balance constraint
∑

β

′
xαβ −

∑

β

′
xβα = vδ(α, S) − vδ(α, T ). (7)

Here
∑′ means a sum over all adjacent nodes of α, δ()

denotes the Kronecker δ symbol, and v is a non-negative
parameter. The mass balance constraint allows us to in-
terpret the flow {xαβ} as a conserved flux configuration
of, e.g., a fluid which originated from the source S by the
amount of v and targeted to the sink T through the net-
work G′.

Due to the capacity constraint, there exists the upper
bound in v, beyond which a flow satisfying equations (6)
and (7) does not exist. Then, the question that arises nat-
urally is to find the maximum value v� and the corre-
sponding flow {x�

αβ} that can be delivered. This is the
maximum flow problem.

The celebrated max-flow/min-cut theorem of Ford and
Fulkerson [36] states that for a given capacitated network
G′, the maximum flow v� is equal to the minimum cut
capacity, that is to say,

v� = min
[S,T ]

C[S, T ] . (8)

The rigorous proof of the theorem can be found else-
where [29]. Intuitively the theorem states that the max-
imum flow is limited by the bottleneck in the network
whose capacity is given by the minimum cut capacity.

The maximum flow problem can be solved numeri-
cally in a polynomial time with the augmenting path al-
gorithm or the preflow-push/relabel algorithm [29,36]. In
the augmenting path algorithm, one repeatedly searches
for a path from S to T via unsaturated (xαβ < cαβ) links

and updates {xαβ} by augmenting flows along the path.
When the augmenting path does not exist any more, the
resulting flow corresponds to the maximum flow configu-
ration. The preflow-push/relabel algorithm is a more so-
phisticated and efficient algorithm.

Once the maximum flow configuration {x�
αβ} is found,

the minimum cut is constructed easily. Let SS be the set
of all nodes of G′ that can be reachable from the source
S only through unsaturated (x�

αβ < cαβ) links. Trivially,
SS does not include the sink T , since there does not exist
any augmenting path in the maximum flow configuration.
Hence, the set SS and its complement SS defines a cut
[SS ,SS ], which is indeed a minimum cut of G′.

One may find the minimum cut in another way. Let
TT be the set of all nodes of G′ that can be reachable from
the sink T only through unsaturated links. Then, TT and
its complement TT defines a cut [TT , TT ], which is also the
minimum cut.

The two cuts [SS ,SS ] and [TT , TT ] may be different,
which implies that the corresponding FRFIM has degen-
erate ground states. In that case, all degenerate ground
states can be found systematically [29]. In this work, we
are interested in the spins that are fixed in all ground
states. One can easily verify that all nodes i ∈ SS (TT )
except for S (T ) are in the spin state σi = +1 (−1) in all
ground states. The other nodes j /∈ SS and TT may be in
either state σj = ±1.

We provide an example illustrating the mapping be-
tween the FRFIM and the maximum flow or the mini-
mum cut problem in Figure 4. The maximum flow con-
figuration is depicted in Figure 4c with the maximum
flow v� = 8. The links drawn with dotted lines are sat-
urated (x�

αβ = cαβ). The sets of all nodes that are reach-
able from S and T through unsaturated links are given
by SS = {S, a} and TT = {T, b, d}. They yield the min-
imum cuts [SS ,SS ] and [TT , TT ] whose boundaries are Y
and Z, respectively. Hence, one finds that σa = +1 and
σb = σd = −1 in all degenerate ground states. The node
c does not belong to either SS or TT . Hence σc may be
either +1 or −1.

In the present work, we considered the FRFIM on a
weighted network G with the specific magnetic field distri-
bution given in equation (2) for a certain node pair s and
t. Then, we need to find the coterie Cs (Ct) of s (t) which
is the set of all nodes that are in the same spin state as
s (t) in the ground state. We can summarize the method
to find the coteries:

1. Construct the capacitated network G′.
2. Find the maximum flow configuration {x�

αβ} using the
numerical algorithms.

3. Find the set SS (TT ) of all nodes that are reachable
from S (T ) through unsaturated links with x�

αβ < cαβ .
4. Then, the coteries are given by Cs = SS − {S} and

Ct = TT − {T }.

After finding the coteries, the community structure can
be investigated with the method explained in Section 2.
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